Math 5330, Test I ({1\
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find a permutation mnatrix P, a lower triangular matrix L, and an upper
triangular matrix U such that A = PLU.
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2. An N by N band matrix has K non-zero diagonals below the main
diagonal and L above. If 1 << K, L << N, approximately how many
i multiplications are done:
(_(( a. during the forward elimination, if no pivoting is done? N KL
L. during the forward elimination, if partial pivoting is done? N K ( CF& )
¢. during back substitution, if no pivoting is donc? N

. during back substitution, if partial pivoting is done? N (L./. K \
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b. Prove that the Gauss-Seidel method:
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4. Which of the B mg linear systems would you expect to produce
the most relative round-off error, using Gauss elimination with partial
pivoting? Justify your answer.
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5. Decfine:
S a. orthogonal matrix
T
AR =T
b. lower Hessenberg matrix
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¢. positive definite matrix
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0. The following Fortran program solves a linear system Ax = b with
symmetric matrix A, using Gauss-Jordan without pivoting, but tak-
mg advantage of symmetry. For large N, approximately how many
multiplications are done? Show your work.

SUBROUTINE DLINEQ(A,N,X,B)
DOUBLE PRECISION A(N,N),X(N),B(N),LJI
C REDUCTION TO DIAGONAL
DO 50 I=1,N
C ELIMINATE ELEMENTS ABOVE DIAGONAL IN COLUMN I
DO 20 J=1,I-1
LJI = A(J,I)/A(I,1)
DO 10 K=I,N

10 CONTINUE

AC(J,K) = A(J,K) - LJI*A(I,K)
()
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B(J) = B(J) - LJI*B(I)
20 CONTINUE
C ELIMINATE ELEMENTS BELOW DIAGONAL IN COLUMN I.
C TAKE ADVANTAGE OF SYMMETRY HERE.
DO 40 J=I+1,N
LJI = A(I,J)/A(1,1)
DO 30 K=J,N
A(J,K) = A(J,K) - LJI*A(TI,K)
30 CONTINUE
B(J) = B(J) - LJI*B(I)
40 CONTINUE
50 CONTINUE
C SOLVE DIAGONAL SYSTEM
DO 55 I=1,N
X(I) = B(I)/A(I,I)
55 CONTINUE

RETURN
END
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Math 5330, Test I (Qﬂ

1. Find the LU decomposition (no pivoting) of
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2. A MATLAB program to solve a symmetric system Az = b docs most
of its work in the loops:

for I=1:N-1
for J=I+1:N
for K=J:N
A(J,K) = A(J,K) - LJI*A(I,K)
end
end
end

For large N, approximately how many multiplications are done (show

work)? - AN —
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3. Prove that 122l < cond(A)J— if Az =>5band A(z+ Az) =b+ Ab.
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4. If we use the usual finite difference approximation, the DE u"(z) =
f(z),u(0) = u(n) = 0 becomes:

Ui+1 - 2Uz + Ui—l = hzf(flfz), 1= 1., ey N —1
U(il’)o) = U(.’I?N) =0

where h = /N, z; = ih, U; =~ u(z;).

a. This is a linear system of N — 1 equations for the N — 1 unknowns
Ui, ...,Un-1. If a band solver is used to solve the system, the work
( is proportional to what power of N7 /
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b. If Jacobi’s iterative method is used to solve it, the iteration will
take the form U**! = BU* + c; what is the matrix B?
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c. What are the eigenvalues of the B matrix (hint: for any m =
1,...,N — 1, the vector U with components U; = sin(mz;) is
an eigenvector. You will need the trig identity sin{a + b) =

sin(a)cos(b) 4 cos(a)sin(b))
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d. What is the largest eigenvalue of B in absolute value? Will the
Jacobi method converge?
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e. Given that the error goes down each iteration by a factor ap-
proximately equal to the largest eigenvalue, estimate how many
iterations of the Jacobi method are required to decrease the error
by a factor of . (Hint: cos(z) ~ 1 — z2/2 and In(1 + z) ~ z for

(-2/ z = 0) (CQJ*/\BM—?-Q /Vl(—’-%\é/d‘\—é
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f. The total work to solve the linear system using the JacGbi-iterative
method is then proportional to what power of N7 Which is faster
for this tridiagonal system—a band solver or the Jacobi iterative
method?
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. If the Gauss-Seidel iterative method is used to solve the linear
system, what is the matrix B (see part (b)) now? You need not
write the matrix out explicitly, for example, you can write it as
E~1F, where you define E and F. Gauss-Seidel will converge if
and only if what is true about B?
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Math 5330, Test I (C'\

Name ____Z_e,} ________________

1. a. Show that any matrix which has a ” Cholesky” decomposition A =
LLT, with L nonsingular, is positive definite, that is, show it is
symmetric and xTAa: > (0 for any nonzero vector z.
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KAy = ety (L) 2T =N LT > 0
(,{n/enr LTy =0 = x =0

b. Show that
1100
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is positive definite, by finding its LU decomposition.
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2. An N by N band matrix has N'/3 non-zero diagonals below the main
diagonal and the same number above. If N is large, approximately how
many multiplications are done:

\

37
a. during the forward elimination, if no pivoting is done? /V (// \
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b. during the forward elimination, if partial pivoting is done? | ( 2 /{/
c. during back substitution, if no pivoting is done? /1/ ,(/ > £ /{/

d. during back substitution, if partial pivoting is donc?
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3. A MATLAB program which solves a symmetric linear system, with no
pivoting, does most of its work in the loops:

for I=1:N-1
for J=I+1:N
for K=J:N
A(J,K) = A(J,K) - LJI*A(I,K)
end
end
end

Approximately how many multiplications are done (show work)? How
does this compare to Gaussian elimination for a nonsymmetrlc system"
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4. a. Ifa matrlx 1% decomposed into its (strictly) subdiagonal, diagonal,
and (strictly) superdiagonal parts, A = L + D + U, the Jacobi
iterative method for solving Az = b will converge if and only if all
elgenvalues of what matrix are less than 1 in absolute vgluc'*I
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b. Same question, for the Gauss-Seidel method. _ \

Dixpy = =Lty =Ur 4 4 @”’

et

‘\

c. Using parts [a.] and [b.], show that both Jacobi and Gauss-Seidel
methods will converge if A is either upper triangular or lower
triangular, and all its diagonal elements &l nonzero. (Hint: the
eigenvalues of an upper or lower triangular matrix are its diagonal
entries.)
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5. Approximately how many significant digits would you expect in the
solution of Az = b if Gaussian elimination with partial pivoting is used
on a computer with machine precision ¢ = 1072, and
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6. Define:

a. orthogonal matrix
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b. lower Hessenberg matrix
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Math 5330, Test 1 (&\

Work any 5 problems, clearly indicate which problem is NOT to be graded.

1. If

-4 2 1
A= 0 31
8 2 3

find a lower triangular matrix L, and an upper triangular matrix U
such that A = LU.
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N by N band matrix has v/N non-zero diagonals below the main

diagonal and the same number above. If N is large, approximately how
many multiplications are done:

a
b

¢

T
. during the forward elimination, if no pivoting is done? N ({,&) o
. during the forward elimination, if partial pivoting is done? 2 /\/( J-/;,)l
. during back substitution, if no pivoting is done? /V ‘

. during back substitution, if partial pivoting is done? é’@
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3. A MATLAB program which solves a symmetric linear system, with no
G pivoting, using Gauss-Jordan, does most of its work in the loops:

for I=1:N
ELIMINATE ELEMENTS ABOVE DIAGONAL IN COLUMN I
for J=1:1I-1

,V for K=I:N
fé;f cI;(Aﬁ,j;) A(J,K)

= A(J,K) - LJII*A(I,K);

end
y = end
% ELIMINATE ELEMENTS BELOW DIAGONAL IN COLUMN I
% TAKE ADVANTAGE OF SYMMETRY HERE
i for J=I+1:N
for K=J:N
v ACJ,K) = A(J,K) — LIT*A(T,K)
g 2 KN’T) end
1 end
i;\ J= end

Approximately how many multiplications are done (show work)? How
does this compare to Gaussian elimination for a nonsymmetric system?
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5. Would you expect the Jacobi iterative method to converge, when used

to solve:
1 2 3 T 1
0 4 5 y =11
0 0 6 z 1

What about the Gauss-Seidel method? Justify your answers theoreti-
cally, that is, without actually taking any iterations.
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6. Define:

a. orthogonal matrix /4 - 14 T
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b. lower Hessenberg matrix
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. tridiagonal matrix

d. positive definite matrix
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Math 5330, Test 1 %)

—- o O

0011
1001
A—l 00}
0111

find a permutation matrix P, a lower triangular matrix L, and an upper
triangular matrix U such that PA = LU.
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2. Prove that HHL\‘—“ﬁL < cond(A)“mJ—”[l if Az =b and A(z + Az) = b+ Ab.
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3. If we use the usual finite difference approximation, the DE u"(z) =
f(z),u(0) = u(m) = 0 becomes:

Ui+1 - 2UZ + Ui—l s hzf(:ti), 1= 1, sy N-—-1
U(l’o) = U(CEN) =0

where h = m/N, z; = ih, U; = u(z;).

a. This is a linear system of N — 1 equations for the N — 1 unknowns
/L/ Ui, ...,Un—1. If a band solver is used to solve the system, the work
is proportional to what power of N7 O O/)

b. If Jacobi’s iterative method is used to solve it, the iteration will
fl/ take the form U**! = BU® + ¢; what is the matrix B?
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c. What is || B||eo?

d. What are the eigenvalues of the B matrix (hint: for any m =

1,..,N — 1, the vector U with components U; = sin(mz;) is

1T an eigenvector. You will need the trig identity sin(a + b) =
sin{a)cos(b) + cos(a)sin(b))
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e. What is the largest eigenvalue of B in absolute value? Will the = gy [\ S

Jacobi method converge?
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4. Which of the following linear systems has the largest condition number?
Would you expect to have serious round-off error problems if you solved
this system, using Gauss elimination with partial pivoting?
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5. Define:

a. orthogonal matrix
AR =T

b. upper Hessenberg matrix
A—‘j o for )‘-zf““f
positive definite matrix
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6. The following MATLAB program solves a linear system Az = b with no
pivoting, it knocks out all elements above and below the diagonal and
then solves the final diagonal system. However, unlike Gauss-Jordan,
it knocks out all elements below the diagonal “before” knocking out the
elements above. For large N, approximately how many multiplications
are done? Show your work.

function X = DLINEQ(A,N,B)

yA REDUCE TO UPPER TRIANGULAR FORM (NO PIVOTING)
for I=1:N-1
% KNOCK QUT ELEMENTS BELOW DIAGONAL IN COLUMN I
for J=I+1:N
MA LJI = ACJ,I)/ACT,I);
for K=I:N
ACI,K) = A(J,K) - LII*A(I,K);
end

B(J) = B(J) - LJI*B(D);

NOW REDUCE TO DIAGONAL FORM

for I=N:-1:2
% KNOCK OUT ELEMENTS ABOVE DIAGONAL IN COLUMN I
for J=1:1I-1
LJI = A(J,D)/A(T,I);
l{( éj(kjt\ ACQJ,I) = A(QJ,I) - LII*A(I,I);
B(J) = B(J) - LJI*B(I);
end
end
yA NOW SOLVE DIAGONAL SYSTEM
for I=1:N
E](}/) X(I) = B(I)/ACT,T);

end

YQTH a J*}/B/-:m\& a~ (F
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Math 5330, Test I k }C)

If

3 -2 2
A= 1 0 1
—4 —4 4

do Gaussian elimination with partial piwoting to find a permutation
matrix P, a lower triangular matrix L, and an upper triangular matrix

U such that A= PLU.
iy A _
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Prove that the Jacobi method:

1
i = (b= S oua
ii Ji

converges, if A is diagonal dominant (a;| > 3=, |ai;|, for each i).
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3. What is the order of work (O(N?)) for each of the following? Assume
all matrices are N by N, where N is large, and that advantage is taken
of any special structure mentioned. Assume A is full, for parts a,b,c,d.
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The forward elimination stage of Gaussian elimination applied to
Az =b.

The backward substitution stage of Gaussian elimination.

Solution of Az = b if an LU decomposition is known.

d. The Gauss-Seidel iteration to solve Az = b, if N iterations are

required for convergence.

Solution of Az = b if A is tridiagonal, except that A;ny and An;
are also nonzero.

Solution of Az = b using Gaussian elimination if A is banded,
with bandwidth v/N, and no pivoting is done.

Same as (f) but now partial pivoting is done.

Same as (f) but now assume an LU decomposition of A is already
known.

4. Which of the following linear systems would you expect to produce
the most relative round-off error, using Gauss elimination with partial
pivoting? Justify your answer.

10° 108 | [z] [1]
10°% 107° ||y | |1]
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5. A MATLAB program which solves a linear system using Gauss-Jordan
does most of its work in the loops:

for I=1:N
for J=1:N
if (J 7= 1)
for K=I:N
A(J,K) = A(J,K) - LJI*A(I,K);
end
end

end
5 end

Approximately how many multiplications are done (show work)? How
does this compare to Gaussian elimination?

M, %
g N = WE_NET = VM

A= L=
6. Would you expect the Jacobi iterative method to converge, when used

to solve:
1 -2 -3 z 1
0 4 -5 yl=1]1
0 0 6 2 1

What about the Gauss-Seidel method? Justify your answers theoreti-
cally, that is, without actually taking any iterations.
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A

find a permutation matrix P, a lower triangular matrix L, and an upper
triangular matrix U such that PA = LU.
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2. Use the decomposition of A from Problem 1 to solve Az = b, where
b = (6,17, —3). That is, multiply both sides by P : PAz = Pb so
LUz = Pb, then solve Ly = Pb, then Uz = y.
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3. An N by N band matrix has L non-zero diagonals below the main
diagonal and L above. If 1 << L << N, approximately how many
multiplications are done:

[
a. during the forward elimination, if no pivoting is done? /\/ L
b. during the forward elimination, if partial pivoting is done? 2 /\/Lz‘

o

. during back substitution, if no pivoting is done? y 1A
d. during back substitution, if partial pivoting is done? N [

Hint: below is a MATLAB program which solves a banded linear sys-
tem with no pivoting. How do the limits change if partial pivoting is
done?

function X = LBANDO(A,B,N,L)

h
% ARGUMENT DESCRIPTIONS
%
% A - (INPUT) A IS AN N BY 2+L+1 ARRAY CONTAINING THE BAND MATRIX.
% A(I,L+1+J-I) CONTAINS THE MATRIX ELEMENT IN ROW I, COLUMN J.
% X - (OUTPUT) X IS THE SOLUTION VECTOR OF LENGTH N.
% B - (INPUT) B IS THE RIGHT HAND SIDE VECTOR OF LENGTH N.
% N - (INPUT) N IS THE NUMBER OF EQUATIONS AND NUMBER OF UNKNOWNS
pA IN THE LINEAR SYSTEM.
% L - (INPUT) L IS THE HALF-BANDWIDTH, DEFINED AS THE MAXIMUM VALUE
% OF ABS(I-J) SUCH THAT AIJ IS NONZERO.
%
MD = L+1;
pA BEGIN FORWARD ELIMINATION
for K=1:N-1
if (A(K,MD) == 0.0)
error (’Zero pivot encountered’)
end

for I=K+1:min(K+L,N)
AMUL = -A(I,MD+K-I)/A(K,MD);
if (AMUL ~= 0.0)
% ADD AMUL TIMES ROW K TO ROW I
for J=K:min(K+L,N)
A(I,MD+J-I) = A(I,MD+J-I) + AMUL*A (K ,MD+J-K) ;
end
B(I) = B(I) + AMUL*B(K);
end
end



end
if (A(N,MD) == 0.0)
error (’Zero pivot encountered’)

end
% BEGIN BACK SUBSTITUTION

X(N) = B(N)/A(N,MD);
for K=N-1:-1:1
SUM = 0;
for J=K+1:min(K+L,N)
SUM = SUM + A(K,MD+J-K)*X(J);
end
X(K) = (B(K)-SUM)/A(K,MD);
end

4. Find the condition number of
1 00 6 —
B=1}11000 1 O —
0 01 ! (

@ d8) = (g8 =(foot ) (oot} 2

5. Approximately how many multiplications does the following MATLAB program do,

for large N:
X =1;
0 for L=1:N /1/3 3 . 3
for I=L:N "f‘éf—/} . F / i
for J=L:N -
for K=L:N
X = XxX;
end
end
end
end



. Consider the 1D boundary value problem —Uyz + U = sin(x) with boundary con-
ditions U(0) = 1,U(2) = 2. This differential equation can be approximated using
the finite difference equation:

—Uiy1+2U; = Uiy
h2

+ U; = sin(z;)

for i = 2, ...,n, where z; = (i—1)h, h = 27/n, and U; is an approximation to U(z;).
The boundary conditions imply Uy = 1, Upy1 = 2.

The MATLAB program below should do 1000 iterations of the Gauss-Seidel it-
eration to solve this finite difference system, complete the incomplete statement.

Bl vy comorge S o | fliroef

n = 20;
h = 2*pi/n;
u(2:n) = 0;
u(l) = 1;
u(nt+l) = 2;
for iter=1:1000
for i=2:n
% complete this statement:
u(i) = A .
end ® (A ¥ s (Ge)K) + U le-1) + & (4‘+/)) /(Z% A/IZ>)’
end

. Define:

a. orthogonal matrix

AA =T
b. upper Hessenberg matrix

C(V =0 S j &q4-/
c. positive definite matrix

/‘]7 ﬁﬂi X‘T/ﬁn{ 2 © )[;/\p,//xjo

d. ||A]lp, if A is a matrix ///7) , /%a
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Math 5330, Test 1 Q\)

1. If

A=

1 2 3
2 4 8
-2 -5 -4

find a permutation matrix P, a lower triangular matrix L, and an upper
triangular matrix U such that PA = LU.

' 113
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2. Use the decomposition of A from Problem 1 to solve Az = b, where
b = (8,18,—16). That is, multiply both sides by P : PAz = Pb so
LUz = Pb, then solve Ly = Pb, then Uz =y '

Ph= 1[5
—/
[§

Ly = (-—M = ib




3. Consider the linear system:

—4 5 1 _ 1
1 2 Lo N 3
a. If the Jacobi iterative method is written in the form z"t! = Bz™+
¢, what is B?

g

~
5 ©

b. Determine theoretically if the Jacobi method will converge, with-
out doing any actual iterations.

>\7_+%_:0 ,\’:igi CUKV{?'-Q/‘

c. If the Gauss-Seidel method is written in the form z"** = Bz" +c,
what is B?

p=(© *
0 %

d. Determine theoretically if the Gauss-Seidel method will converge,
without doing any actual iterations.
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4. Approximately how many multiplications does the following MATLAB
program do, for large N7

X=1;
for L=1:N
for I=1:L
for J=1:1
for K=1:1J
X = X*X;
end

end /V_ a T
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5. Compute the condition number (infinity norm) for each of these ma- 27 .

trices and tell which you would expect to produce the most relative
round-off error, using Gauss elimination with partial pivoting?
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6. Define:

a. orthogonal matrix
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b. lower Hessenberg matrix

. tridiagonal matrix
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. positive definite matrix
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e. ||z|loo, if z is a vector
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find a permutation matrix P, a lower triangular matrix L, and an
upper triangular /g1atrix U such that A= PLU.
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b. What is the main use for an LU decomposition of a large matrix?
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2. A MATLAB program to solve a symmetric system Az = b does most

of its work in the loops:

for I=1:N-1

for J=I+1:N

for K=J:N
A(J,K) = A(J,K) - LJI*A(I,K)

) d
/O enden

end

For large N, approximately how many multiplications are done (show

work)?
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3. If we use the usual finite difference approximation, the DE u”(z)
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f(z),u(0) = u(m) = 0 becomes:

Uppr — 2U; + Uiy = K2 f (i),

U(zo) = U(zn) =0

i=1,..,N—1

where h = /N, z; = th, U; = u(z;).

a. This is a linear system of N — 1 equations for the N — 1 unknowns
Uy, ...,Un_1. If a band solver is used to solve the system, the work

b

5 is proportional to what power of N?
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b. If Jacobi’s iterative method is used to solve it, the iteration will
take the form U*t! = BU* + ¢; what is the matrix B?
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c. What are the eigenvalues of the B matrix (hint: for any m =

1,..,N — 1, the vector U with components U; = sin(mz;) is

g an eigenvector. You will need the trig identity sin(a + b) =
sin(a)cos(b) + cos(a)sin(b))
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d. What is the largest eigenvalue of B in absolute value? Will the
Jacobi method converge?
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e. Given that the error goes down each iteration by a factor ap-
proximately equal to the largest eigenvalue, estimate how many
iterations of the Jacobi method are required to decrease the error
by a factor of e. (Hint: cos(z) ~ 1 — 2%/2 and In(1 + 2) = z for
z = 0) i
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£ The total work to solve the linear system using the Jacobi iterative
method is then proportional to what power of N? Which is faster
g for this tridiagonal system—a band solver or the Jacobi iterative

method?
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4. a. Find a QR decomposition of
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b. Use this QR decomposition to find min||Az — bl|2, where b =
1,2, -1).
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c. What is the main use for a QR decomposition of a large matrix?
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5. Prove that if AATz = b, and = = ATz, then = minimizes ||z||2 over all
solutions of Az = b.
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