Spanning trees and the critical group of simplicial complexes

Art Duval1 Caroline Klivans2 Jeremy Martin3

1University of Texas at El Paso
2University of Chicago
3University of Kansas

Mathematics Seminar
Reed College
April 28, 2011
Spanning trees of K_n

Theorem (Cayley)

K_n has n^{n-2} spanning trees.
Spanning trees of K_n

Theorem (Cayley)

K_n has n^{n-2} spanning trees.

$T \subseteq E(K_n)$ is a spanning tree of K_n when:

0. spanning: T contains all vertices;
1. connected ($\tilde{H}_0(T) = 0$)
2. no cycles ($\tilde{H}_1(T) = 0$)
3. correct count: $|T| = n - 1$

If 0. holds, then any two of 1., 2., 3. together imply the third condition.
Example: K_4

- 4 trees like: $T = \{1, 2, 3, 4\}$
Example: K_4

- 4 trees like: $T =$

- 12 trees like: $T =$

Total is $16 = 4^2$.

Duval, Klivans, Martin: Spanning trees and the critical group of simplicial complexes
Example: K_4

- 4 trees like: $T = \begin{align*}
 &3 \\
 2 &\quad 4 \\
 &3 \\
 1 &\quad 2 \\
\end{align*}$

- 12 trees like: $T = \begin{align*}
 &3 \\
 2 &\quad 4 \\
 &3 \\
 1 &\quad 2 \\
\end{align*}$

Total is $16 = 4^2$.
Definition The Laplacian matrix of graph G, denoted by $L(G)$. \
\[L(G) = D(G) - A(G) \]
\[D(G) = \text{diag}(\deg v_1, \ldots, \deg v_n) \]
\[A(G) = \text{adjacency matrix} \]
\[\partial(G) \partial(G)^T = \text{incidence matrix (boundary matrix)} \]

"Reduced": remove rows/columns corresponding to any one vertex
Laplacian

Definition The **Laplacian** matrix of graph G, denoted by $L(G)$.

Defn 1: $L(G) = D(G) - A(G)$

- $D(G) = \text{diag}(\text{deg } v_1, \ldots, \text{deg } v_n)$
- $A(G) = \text{adjacency matrix}$
Laplacian

Definition The Laplacian matrix of graph G, denoted by $L(G)$.

Defn 1: $L(G) = D(G) - A(G)$
$D(G) = \text{diag}(\deg v_1, \ldots, \deg v_n)$
$A(G) = \text{adjacency matrix}$

Defn 2: $L(G) = \partial(G)\partial(G)^T$
$\partial(G) = \text{incidence matrix (boundary matrix)}$
Laplacian

Definition The reduced Laplacian matrix of graph G, denoted by $L_r(G)$.

Defn 1: \(L(G) = D(G) - A(G) \)

\(D(G) = \text{diag}(\text{deg } v_1, \ldots, \text{deg } v_n) \)

\(A(G) = \text{adjacency matrix} \)

Defn 2: \(L(G) = \partial(G)\partial(G)^T \)

\(\partial(G) = \text{incidence matrix (boundary matrix)} \)

"Reduced": remove rows/columns corresponding to any one vertex
Example

\[
\begin{align*}
L &= \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \\
\end{pmatrix} \\
\partial &= \begin{pmatrix}
1 & -1 & -1 & -1 & 0 & 0 \\
2 & 1 & 0 & 0 & -1 & -1 \\
3 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 0 & 1 & 0 & 1 \\
\end{pmatrix}
\end{align*}
\]
Matrix-Tree Theorems

Version I Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$\frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

spanning trees.

Version II G has $|\det L_r(G)|$ spanning trees

Proof [Version II]

$$\det L_r(G) = \det \partial_r(G) \partial_r(G)^T = \sum_T (\det \partial_r(T))^2$$

$$= \sum_T (\pm 1)^2$$

by Binet-Cauchy
Example: K_n

\[
\begin{align*}
L(K_n) &= nl - J & (n \times n); \\
L_r(K_n) &= nl - J & (n - 1 \times n - 1)
\end{align*}
\]
Example: \(K_n \)

\[
L(K_n) = nl - J \quad (n \times n);
\]

\[
L_r(K_n) = nl - J \quad (n - 1 \times n - 1)
\]

Version I: Eigenvalues of \(L \) are \(n - n \) (multiplicity 1), \(n - 0 \) (multiplicity \(n - 1 \)), so

\[
\frac{n^{n-1}}{n} = n^{n-2}
\]
Example: K_n

$$L(K_n) = nl - J \quad (n \times n);$$

$$L_r(K_n) = nl - J \quad (n - 1 \times n - 1)$$

Version I: Eigenvalues of L are $n - n$ (multiplicity 1), $n - 0$ (multiplicity $n - 1$), so

$$\frac{n^{n-1}}{n} = n^{n-2}$$

Version II:

$$\det L_r = \prod \text{eigenvalues}$$

$$= (n - 0)^{(n-1)-1}(n - (n - 1))$$

$$= n^{n-2}$$
Complete skeleta of simplicial complexes

Simplicial complex $\Delta \subseteq 2^V$;
\[F \subseteq G \in \Delta \Rightarrow F \in \Delta. \]
Complete skeleta of simplicial complexes

Simplicial complex \(\Delta \subseteq 2^V; \)
\[F \subseteq G \in \Delta \Rightarrow F \in \Delta. \]

Complete skeleton The \(d \)-dimensional complete complex on \(n \) vertices, i.e.,
\[K^d_n = \{ F \subseteq V : |F| \leq d + 1 \} \]
(so \(K_n = K^1_n \)).
Simplicial spanning trees of K^d_n [Kalai, ’83]

$\Upsilon \subseteq K^d_n$ is a simplicial spanning tree of K^d_n when:

0. $\Upsilon_{(d-1)} = K^{d-1}_n$ (“spanning”);
1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group (“connected”);
2. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$ (“acyclic”);
3. $|\Upsilon| = \binom{n-1}{d}$ (“count”).

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When $d = 1$, coincides with usual definition.
Counting simplicial spanning trees of K_n^d

Conjecture [Bolker ’76]

$$\sum_{\Upsilon \in SST(K_n^d)} = n \binom{n-2}{d}$$

Proof uses determinant of reduced Laplacian of K_n^d. "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all $(d-1)$-dimensional faces containing that vertex.
Counting simplicial spanning trees of K_n^d

Theorem [Kalai ’83]

$$\sum_{\gamma \in SST(K_n^d)} |\tilde{H}_{d-1}(\gamma)|^2 = n^{\binom{n-2}{d}}$$
Counting simplicial spanning trees of K_n^d

Theorem [Kalai ’83]

$$\sum_{\Upsilon \in SST(K_n^d)} |\tilde{H}_{d-1}(\Upsilon)|^2 = n^{n-2}$$

Proof uses determinant of reduced Laplacian of K_n^d. “Reduced” now means pick one vertex, and then remove rows/columns corresponding to all $(d-1)$-dimensional faces containing that vertex.

$L = \partial \partial^T$

$\partial : \Delta_d \rightarrow \Delta_{d-1}$ boundary

$\partial^T : \Delta_{d-1} \rightarrow \Delta_d$ coboundary
Example $n = 4, d = 2$

\[\partial^T = \begin{array}{cccccccc}
123 & 12 & 13 & 14 & 23 & 24 & 34 \\
123 & -1 & 1 & 0 & -1 & 0 & 0 \\
124 & -1 & 0 & 1 & 0 & -1 & 0 \\
134 & 0 & -1 & 1 & 0 & 0 & -1 \\
234 & 0 & 0 & 0 & -1 & 1 & -1 \\
\end{array} \]

\[L = \begin{pmatrix}
2 & -1 & -1 & 1 & 1 & 0 \\
-1 & 2 & -1 & -1 & 0 & 1 \\
-1 & -1 & 2 & 0 & -1 & -1 \\
1 & -1 & 0 & 2 & -1 & 1 \\
1 & 0 & -1 & -1 & 2 & -1 \\
0 & 1 & -1 & 1 & -1 & 2 \\
\end{pmatrix} \]
Simplicial spanning trees of arbitrary simplicial complexes

Let Δ be a d-dimensional simplicial complex. $\Upsilon \subseteq \Delta$ is a simplicial spanning tree of Δ when:

0. $\Upsilon_{(d-1)} = \Delta_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");

2. $\tilde{H}_{d}(\Upsilon; \mathbb{Z}) = 0$ ("acyclic");

3. $f_{d}(\Upsilon) = f_{d}(\Delta) - \tilde{\beta}_{d}(\Delta) + \tilde{\beta}_{d-1}(\Delta)$ ("count").

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When $d = 1$, coincides with usual definition.
Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$

Let’s figure out all its simplicial spanning trees.
Acyclic in Positive Codimension (APC)

- Denote by $SST(\Delta)$ the set of simplicial spanning trees of Δ.
- **Proposition** $SST(\Delta) \neq \emptyset$ iff Δ is APC, i.e. (equivalently)
 - homology type of wedge of spheres;
 - $\tilde{H}_j(\Delta; \mathbb{Z})$ is finite for all $j < \dim \Delta$.
- Many interesting complexes are APC.
Simplicial Matrix-Tree Theorem — Version I

- Δ a d-dimensional APC simplicial complex
- $(d - 1)$-dimensional (up-down) Laplacian $L_{d-1} = \partial_{d-1} \partial^T_{d-1}$
- $s_d =$ product of nonzero eigenvalues of L_{d-1}.

Theorem [DKM '09]

$$h_d := \sum_{\gamma \in SST(\Delta)} |\tilde{H}_{d-1}(\gamma)|^2 = \frac{s_d}{h_{d-1}} |\tilde{H}_{d-2}(\Delta)|^2$$
Simplicial Matrix-Tree Theorem — Version II

- $\Gamma \in SST(\Delta_{d-1})$
- $\partial \Gamma$ = restriction of ∂_d to faces not in Γ
- reduced Laplacian $L_\Gamma = \partial \Gamma \partial^T \Gamma$

Theorem [DKM '09]

$$h_d = \sum_{\gamma \in SST(\Delta)} |\tilde{H}_{d-1}(\gamma)|^2 = \frac{|\tilde{H}_{d-2}(\Delta; \mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma; \mathbb{Z})|^2} \det L_\Gamma.$$

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.
Bipyramid again

\[\Gamma = 12, 13, 14, 15 \] spanning tree of 1-skeleton
Bipyramid again

\[\Gamma = 12, 13, 14, 15 \text{ spanning tree of 1-skeleton} \]

\[
\begin{array}{c|cccccc}
 & 23 & 24 & 25 & 34 & 35 \\
\hline
23 & 3 & -1 & -1 & 1 & 1 \\
24 & -1 & 2 & 0 & -1 & 0 \\
25 & -1 & 0 & 2 & 0 & -1 \\
34 & 1 & -1 & 0 & 2 & 0 \\
35 & 1 & 0 & -1 & 0 & 2 \\
\end{array}
\]

\[\text{det} L_\Gamma = 15. \]
Bipyramid again

\[\Gamma = 12, 13, 14, 15 \] spanning tree of 1-skeleton

\[
L_\Gamma =
\begin{array}{c|cccccc}
 & 23 & 24 & 25 & 34 & 35 \\
\hline
23 & 3 & -1 & -1 & 1 & 1 \\
24 & -1 & 2 & 0 & -1 & 0 \\
25 & -1 & 0 & 2 & 0 & -1 \\
34 & 1 & -1 & 0 & 2 & 0 \\
35 & 1 & 0 & -1 & 0 & 2 \\
\end{array}
\]

\[\det L_\Gamma = 15. \]
Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Motivation
Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction
Graph G with vertices v_1, \ldots, v_n. Degree of v_i is d_i. Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i.
Sandpiles and chip-firing

Motivation
Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction
Graph G with vertices v_1, \ldots, v_n. Degree of v_i is d_i. Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i.

Toppling
If $c_i \geq d_i$, then v_i may fire by sending one chip to each of its neighbors.

\[
\begin{array}{c}
\begin{array}{c}
0 \\
0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 \\
1
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
3 \\
1
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 \\
2
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
0 \\
0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 \\
2
\end{array}
\end{array}
\end{array}
\]
Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v_1, \ldots, v_n. Degree of v_i is d_i. Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i.

Toppling If $c_i \geq d_i$, then v_i may fire by sending one chip to each of its neighbors.
To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.

\[
\begin{array}{ccc}
1 & 1 \\
2 & 0
\end{array}
\]
Source vertex

- To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.
- Put another way: c_r can be any value.
Source vertex

- To keep things going, pick one vertex \(v_r \) to be a source vertex. We can always add chips to \(v_r \).
- Put another way: \(c_r \) can be any value.
- We might think \(c_r \leq 0 \), and \(c_i \geq 0 \) when \(i \neq r \), or that \(v_r \) can fire even when \(c_r \leq d_r \).
To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.

Put another way: c_r can be any value.

We might think $c_r \leq 0$, and $c_i \geq 0$ when $i \neq r$, or that v_r can fire even when $c_r \leq d_r$.

1 1
2 0

1 4
2 0

2 1
3 1

3 -2
4 2
Critical configurations

- A configuration is **stable** when no vertex (except the source vertex) can fire.

\[
\begin{pmatrix}
0 & 1 & 1 \\
2 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]

Fact: Every configuration topples to a unique critical configuration.
Critical configurations

- A configuration is **stable** when no vertex (except the source vertex) can fire.
- A configuration is **recurrent** when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.

![Graph with vertices and edge weights]

Fact: Every configuration topples to a unique critical configuration.

Duval, Klivans, Martin
Critical configurations

- A configuration is **stable** when no vertex (except the source vertex) can fire.
- A configuration is **recurrent** when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- A configuration is **critical** when it is stable and recurrent.

```
1 1 2
2 0 3
```
```
-2 3
1 0
```
```
-1
2
```
Critical configurations

- A configuration is **stable** when no vertex (except the source vertex) can fire.
- A configuration is **recurrent** when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- A configuration is **critical** when it is stable and recurrent.

Fact: Every configuration topples to a unique critical configuration.
Critical configurations

- A configuration is **stable** when no vertex (except the source vertex) can fire.
- A configuration is **recurrent** when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- A configuration is **critical** when it is stable and recurrent.

Fact: Every configuration topples to a unique critical configuration.
Laplacian

Let’s make a matrix of how chips move when each vertex fires:

\[
\begin{pmatrix}
3 & 1 \\
2 & 4
\end{pmatrix}
\]

\[
\begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{pmatrix}
\]

which is the Laplacian matrix

\[
L = D - A = \partial T
\]

where \(\partial\) is the boundary (or incidence) matrix.
Let's make a matrix of how chips move when each vertex fires:

\[
\begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \\
\end{pmatrix} = D - A,
\]

\[
D - A = \text{Laplacian matrix}
\]
Laplacian

Let's make a matrix of how chips move when each vertex fires:

\[
\begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \\
\end{pmatrix}
= D - A,
\]

which is the Laplacian matrix

\[
L = D - A = \partial \partial^T
\]

where ∂ is the boundary (or incidence) matrix.
Let's make a matrix of how chips move when each vertex fires:

\[
\begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{pmatrix} = D - A,
\]

which is the Laplacian matrix

\[
L = D - A = \partial \partial^T
\]

where \(\partial \) is the boundary (or incidence) matrix. So firing \(v \) is subtracting \(Lv \) (row/column \(v \) from \(L \)) from \((c_1, \ldots, c_n)\).
Kernel ∂

- Did you notice?: Sum of chips stays constant.
Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.
Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.
- We can pick $c_i, i \neq r$, arbitrarily, and keep $c \in \ker \partial$ by picking c_r appropriately.
Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.
- We can pick $c_i, i \neq r$, arbitrarily, and keep $c \in \ker \partial$ by picking c_r appropriately.
Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.

- We can pick $c_i, i \neq r$, arbitrarily, and keep $c \in \ker \partial$ by picking c_r appropriately.
Critical group

Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
Critical group

- Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
Critical group

- Consider two configurations (in $\ker \partial$) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- This equivalence means adding/subtracting integer multiples of Lv_i.

\[\text{Critical group} \quad \text{of simplicial complexes}\]
Critical group

Consider two configurations (in $\ker \partial$) to be equivalent when you can get from one to the other by chip-firing.

Recall every configuration is equivalent to a critical configuration.

This equivalence means adding/subtracting integer multiples of Lv_i.

In other words, instead of $\ker \partial$, we look at

$$K(G) := \ker \partial / \text{im } L$$

the critical group. (It is a graph invariant.)
Reduced Laplacian and spanning trees

Theorem (Biggs ’99)

\[K := (\ker \partial)/(\text{im } L) \cong \mathbb{Z}^{n-1}/L_r, \]

where \(L_r \) denotes reduced Laplacian; remove row and column corresponding to source vertex.
Reduced Laplacian and spanning trees

Theorem (Biggs ’99)

\[K := (\ker \partial)/(\im L) \cong \mathbb{Z}^{n-1}/L_r, \]

where \(L_r \) denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary

\[|K(G)| \] is the number of spanning trees of \(G \).
Reduced Laplacian and spanning trees

Theorem (Biggs ’99)

\[K := (\ker \partial)/(\text{im} \ L) \cong \mathbb{Z}^{n-1}/L_r, \]

where \(L_r \) denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary

\(|K(G)| \text{ is the number of spanning trees of } G.\)

Proof.

If \(M \) is a full rank \(t \)-dimensional matrix, then

\[|(\mathbb{Z}^t)/(\text{im} \ M)| = \pm \det M \]
Reduced Laplacian and spanning trees

Theorem (Biggs ’99)

\[K := (\ker \partial)/(\im L) \cong \mathbb{Z}^{n-1}/L_r, \]

where \(L_r \) denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary

\(|K(G)| \text{ is the number of spanning trees of } G.\)

Proof.

If \(M \) is a full rank \(t \)-dimensional matrix, then

\[|(\mathbb{Z}^t)/(\im M)| = \pm \det M \]

and \(|\det L_r| \) counts spanning trees.
Example

\[L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} \]

\[\partial = \begin{array}{c|cccccc} & 12 & 13 & 14 & 23 & 24 \\ \hline 1 & -1 & -1 & -1 & 0 & 0 \\ 2 & 1 & 0 & 0 & -1 & -1 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 & 0 & 1 \end{array} \]
Example

\[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \\
\end{array} \]

\[L = \begin{pmatrix} 3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \end{pmatrix} \]

\[\det L_r = 8, \text{ and there are 8 spanning trees of this graph} \]
Example

\[
L = \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \\
\end{pmatrix}
\]

\[
L_r = \begin{pmatrix}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2 \\
\end{pmatrix}
\]

\[\det(L_r) = 8, \text{ and there are 8 spanning trees of this graph}\]
Example

\[
L = \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2 \\
\end{pmatrix}
\]

\[
L_r = \begin{pmatrix}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2 \\
\end{pmatrix}
\]

det \(L_r \) = 8, and there are 8 spanning trees of this graph.
Where have we seen this before?

Graphs
Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.
Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

Duval, Klivans, Martin
Spanning trees and the critical group of simplicial complexes
Where have we seen this before?

Graphs
- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes
- To count spanning trees, use the determinant of the reduced Laplacian.
Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a $(d - 1)$-dimensional spanning tree from up-down Laplacian.
Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a \((d - 1)\)-dimensional spanning tree from up-down Laplacian.
Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a \((d - 1)\)-dimensional spanning tree from up-down Laplacian.

So let’s generalize critical groups to simplicial complexes, and see if they can be computed by reduced Laplacians.
Definition

Recall, for a graph G,

$$K(G) := \ker \partial / \text{im } L.$$
Definition

Recall, for a graph G,

$$K(G) := \ker \partial / \text{im } L.$$

Let Δ be a d-dimensional simplicial complex.

$$C_d(\Delta; \mathbb{Z}) \overset{\partial_d^T}{\leftrightarrow} C_{d-1}(\Delta; \mathbb{Z}) \overset{\partial_{d-1}}{\rightarrow} C_{d-2}(\Delta; \mathbb{Z}) \rightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \overset{L_{d-1}}{\rightarrow} C_{d-1}(\Delta; \mathbb{Z}) \overset{\partial_{d-1}}{\rightarrow} C_{d-2}(\Delta; \mathbb{Z}) \rightarrow \cdots$$
Definition

Recall, for a graph G,

$$K(G) := \ker \partial / \text{im } L.$$

Let Δ be a d-dimensional simplicial complex.

$$C_d(\Delta; \mathbb{Z}) \xleftrightarrow{\partial_d^T} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \rightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{T_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \rightarrow \cdots$$

Define

$$K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1},$$

where $L_{d-1} = \partial_d \partial_d^T$ is the $(d - 1)$-dimensional up-down Laplacian.
Spanning trees

Theorem (DKM, pp '11)

\[K(\Delta) := (\ker \partial_{d-1})/(\text{im } L_{d-1}) \cong \mathbb{Z}^t / L_\Gamma \]

where \(\Gamma \) is a torsion-free \((d - 1)\)-dimensional spanning tree, \(L_\Gamma \) is the reduced Laplacian (restriction to faces not in \(\Gamma \)), and \(t = \dim L_\Gamma \).
Spanning trees

Theorem (DKM, pp ’11)

\[K(\Delta) := (\ker \partial_{d-1})/(\text{im } L_{d-1}) \cong \mathbb{Z}^t/L_{\Gamma} \]

where \(\Gamma \) is a torsion-free \((d - 1)\)-dimensional spanning tree, \(L_{\Gamma} \) is the reduced Laplacian (restriction to faces not in \(\Gamma \)), and \(t = \dim L_{\Gamma} \).

Corollary

\[|K(\Delta)| \text{ is the torsion-weighted number of } d\text{-dimensional spanning trees of } \Delta. \]

Proof.

\[|K(\Delta)| = |(\mathbb{Z}^t)/L_{\Gamma}| = |\det L_{\Gamma}|, \text{ which counts (torsion-weighted) spanning trees.} \]
What does it look like?

\[K(\Delta) := \ker \partial_{d-1}/\text{im } L_{d-1} \subseteq \mathbb{Z}^m \]
What does it look like?

\[K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1} \subseteq \mathbb{Z}^m \]

- Put integers on \((d - 1)\)-faces of \(\Delta\). Orient faces arbitrarily.
 - \(d = 2\): flow; \(d = 3\): circulation; etc.
What does it look like?

\[K(\Delta) := \ker \partial_{d-1} / \im L_{d-1} \subseteq \mathbb{Z}^m \]

- Put integers on \((d-1)\)-faces of \(\Delta\). Orient faces arbitrarily.
 - \(d = 2\): flow; \(d = 3\): circulation; etc.
- Conservative flow
What does it look like?

\[K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1} \subseteq \mathbb{Z}^m \]

- Put integers on \((d - 1)\)-faces of \(\Delta\). Orient faces arbitrarily.
 \(d = 2\): flow; \(d = 3\): circulation; etc.
- Conservative flow
 - \(d = 2\): chips do not accumulate or deplete at any vertex;

\[\begin{array}{c}
5 \\
6 \\
\downarrow \\
4 \\
\downarrow \\
1 \\
2 \\
\end{array} \]
What does it look like?

\[K(\Delta) := \ker \partial_{d-1}/\text{im } L_{d-1} \subseteq \mathbb{Z}^m \]

- Put integers on \((d - 1)\)-faces of \(\Delta\). Orient faces arbitrarily.
 - \(d = 2\): flow; \(d = 3\): circulation; etc.
- **Conservative flow**
 - \(d = 2\): chips do not accumulate or deplete at any vertex;
 - \(d = 3\): face circulation at each edge adds to zero.
What does it look like?

\[K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1} \subset \mathbb{Z}^m \]

- Put integers on \((d - 1)\)-faces of \(\Delta\). Orient faces arbitrarily.
 - \(d = 2\): flow; \(d = 3\): circulation; etc.
- Conservative flow
 - \(d = 2\): chips do not accumulate or deplete at any vertex;
 - \(d = 3\): face circulation at each edge adds to zero.
- By theorem, just specify values off the spanning tree.
Firing faces

\[K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1} \subseteq \mathbb{Z}^m \]

Toppling/firing moves the flow to "neighboring" \((d - 1)\)-faces, across \(d\)-faces.
Open problem: Critical configurations?

- What are the critical configurations?
Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives
Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives

- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of “critical”.
Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of “critical”.
- Main obstacle is idea of what is “positive”.
Example: Spheres

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

$K(\Delta) := \ker \partial \frac{d}{d-1} \sim \frac{im L}{d-1}$

Proof.

$\triangleright K(\Delta)$ is generated by boundaries of facets ∂F.

\triangleright In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{im L}$.

\triangleright So $K(\Delta)$ has a single generator, so it is cyclic.

$\triangleright |K(\Delta)|$ is the number of spanning trees, and there is one tree for every facet (remove that facet for the tree).
Example: Spheres

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

$K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1}$

Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.

\[K(\Delta) \equiv \mathbb{Z}_n \]
Example: Spheres

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

$K(\Delta) := \ker \partial_{d-1}/\text{im } L_{d-1}$

Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.
- In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{\text{im } L}$.
Example: Spheres

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

\[K(\Delta) := \ker \partial_{d-1}/\im L_{d-1} \]

Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.
- In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{\im L}$.
- So $K(\Delta)$ has a single generator, so it is cyclic.
Example: Spheres

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

\[
K(\Delta) := \ker \partial_{d-1} / \text{im } L_{d-1}
\]

Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.
- In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{\text{im } L}$.
- So $K(\Delta)$ has a single generator, so it is cyclic.
- $|K(\Delta)|$ is the number of spanning trees, and there is one tree for every facet (remove that facet for the tree).
Final thought

Terry Pratchett, *The Colour of Magic*:
“Do you not know that what you belittle by the name *tree* is but the mere four-dimensional analogue of a whole multidimensional universe which—no, I can see you do not.”
Final thought

Terry Pratchett, *The Colour of Magic*:
“Do you not know that what you belittle by the name *tree* is but the mere four-dimensional analogue of a whole multidimensional universe which—no, I can see you do not.”

But, now, *you* do.