Research Interests
Bayesian computational methods (MCMC),
Ecological inference, Mixtures-of-experts, Time series, Functional data
analysis.
Selected Publications
-
Rosen, O. and Tanner, M. (1999). Mixtures of Proportional Hazards Regression
Models, Statistics in Medicine, 18, 1119-1131.
-
King, G., Rosen, O. and Tanner, M. (1999). Binomial-Beta Hierarchical Models
for Ecological Inference, Sociological Methods and Research, 28,
61-90 (special issue on Bayesian methods in the social sciences)
-
Rosen, O., Jiang, W. and Tanner, M. (2000). Mixtures of Marginal Models.
Biometrika, 87, 391-404.
-
Rosen, O., Jiang, W., King, G. and Tanner, M.A. (2001). Bayesian and
Frequentist Inference for Ecological Inference: the R x C Case, Statistica
Neerlandica, 55, 134-156 (special issue on analysis of repeated
cross-sectional data)
-
Liao, J. and Rosen, O. (2001). Fast and Stable Algorithms for Computing and
Sampling from the Noncentral Hypergeometric Distribution, The
American Statistician, 55, 366-369.
-
Rosen, O. and Cohen, A. (2003). Analysis of Growth Curves via Mixtures,
Statistics in Medicine, 22, 3641-3654.
-
King, G., Rosen, O. and Tanner, M.A. (eds.) Ecological Inference:
New Methodological Strategies, Cambridge University Press (2004).
- Rosen, O. and Stoffer, D.S. (2007). Automatic
Estimation of Multivariate Spectra via Smoothing Splines.
Biometrika, 94, 335-345.
-
Sun, Z., Rosen, O. and Sampson, A.R. (2007).
Multivariate Bernoulli Mixture Models with Application to Postmortem Tissue
Studies in Schizophrenia.
Biometrics, 63, 901-909.
-
Thompson, W. and Rosen, O. (2008).
A Bayesian Model for Sparse Functional Data.
Biometrics, 64, 54-63.
-
King, G., Rosen, O. and Tanner, M.A. Ecological inference. To appear in
The New Palgrave Dictionary of Economics, Second Edition
-
King, G., Rosen, O., Tanner, M.A. and Wagner, A.F. (2008).
Ordinary Economic Voting Behavior in the Extraordinary Election of
Adolf Hitler.
Journal of Economic History, 68, 951-996.
-
Rosen, O., Stoffer, D. and Wood, S. (2009).
Local Spectral Analysis via a Bayesian Mixture of Smoothing Splines.
J. of the American Statistical Association, 104, 249-262.
Fortran program
-
Rosen, O. and Thompson, W. (2009).
A Bayesian Regression Model for Multivariate Functional Data.
J. of Computational Statistics and Data Analysis, 53, 3773-3786.
Matlab Programs
-
Wood, S., Rosen, O. and Kohn, R. (2011).
Bayesian Mixtures of Autoregressive Models .
(Appendices) .
J. of Computational and Graphical Statistics, 20, 174-195.
-
Rosen, O., Wood, S. and Stoffer, D. (2012).
AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series.
J. of the American Statistical Association, 107, 1575-1589.
Matlab Programs,
R package
- Rosen, O. and Thompson, W. (2015).
Bayesian Semiparametric Copula Estimation with Application to Psychiatric
Genetics, Biometrical Journal, 57, 468-484.
- Krafty, R. T., Rosen, O., Stoffer, D. S., Buysse, D. J. and Hall, M. (2017).
Conditional Spectral Analysis of Replicated Multiple Time Series with
Application to Nocturnal Physiology,
J. of the American Statistical Association, 112, 1405-1416.
Matlab code
- Bertolacci, M., Cripps, E., Rosen, O., Lau, J. and Cripps, S. (2019).
Climate Inference on Daily Rainfall Across the Australian Continent, 1876-2015.
Annals of Applied Statistics, 13, 683-712.
pdf
- Marchant, R., Samia, N.I., Rosen, O., Tanner, M.A. and Cripps, S. (2020).
Learning as We Go: An Examination of the Statistical Accuracy of COVID19 Daily Death Count Predictions
- Li, Z., Rosen, O., Ferrarelli, F. and Krafty, R.T. (2021).
Adaptive Bayesian Spectral Analysis of High-Dimensional Nonstationary Time Series, J. of Computational and Graphical Statistics, 30, 794-807.
- Bertolacci, M., Rosen, O., Cripps, E. and Cripps, S. (2022).
AdaptSPEC-X: Covariate Dependent Spectral Modeling of Multiple Nonstationary Time Series
, J. of Computational and Graphical Statistics, 31, 436-454.